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Abstract  

The argument of Einstein for non-Euclidity on a rotating disk is analyzed and found 
valid. The kinematic reason for the non-Euclidean geometry is stated explicitly and pro- 
rides a kinematic resolution of Ehrenfest's paradox. The transformation from an inertial 
frame K to a rotating frame, the axis of which is at rest in K, is discussed. It is concluded 
in favor of the Galilean-like transformation employed by M¢ller. "t!ae method used by 
MNler in obtaining the intrinsic spatial geometry in any frame is examined. It is found 
to be adequate, provided that only coordinates with a proper metrical significance are 
used. In this connection the distinction between global and local geometry is found to be 
essential. 

1. Introduction 

Recently Strauss (1974) has given a description of rotating frames in 
special relativity. In this work the important problem of selecting the most 
suitable transformation from an inertial system K to a rotating frame K ' ,  the 
axis of which is at rest in K, is investigated. One solution of this problem is 
to adopt a transformation with a Galilean character (MNler, 1952). The physi- 
cal reason for this choice is that angular velocity, as opposed to translational 
velocity, is a quantity with an absolute value that can be locally measured, 
both mechanically (by use of Fouceault 's pendulmn) and optically [Sagnac's 
experiment (Post, 1967)] (Grin,  1975). Wanting, however, a transformation 
that has the Lorentz transformation between K and an inertial observer 
instantaneously at rest relative to a point in K'  as limit for small angular vel- 
ocity co and large radius r, such that the uniform rotation tends to a uniform 
translation, Franklin (1922), Trocheries (1949), and Takeno (1952) have pro- 
posed a Lorentz-like transformation with cor/c as velocity parameter (Taylor 
and Wheeler, 1966). Strauss, on the other hand, has proposed a Lorentz-like 
transformation with cot as velocity. 
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He has also cr i t icized Einste in 's  a rgument  for non-Eucl id i ty  on a rota t ing 
disk and the m e t h o d  used by M~ller (1952)  in obtaining the intrinsic geom- 
e t ry  in any frame. 

In this work  the a rgument  o f  Einstein,  men t ioned  above, the m e t h o d  used 
by MNler ,  and the t ransformat ions  to a rota t ing frame are discussed in l ight 
o f  the recent  article by Strauss. It  is conc luded  in favor o f  the Einstein 
a rgument  and the Gatilean-like t ransformat ion .  The m e t h o d  used by MNler  in 
obtaining tile intrinsic geomet ry  in any frame is found to be adequate ,  pro- 
vided that  only coord ina tes  wi th  a proper  metr ical  significance are used. In 
this connec t ion  the dis t inct ion be tween global and local geomet ry  is found 
to be essential. In inertial frames the relevant coordinates ,  bo th  globally and 
locally,  are the Minkowskian  ones, implying  that  different  inertial systems 
are connec t ed  with  Lorentz  t ransformat ions .  

2. On Einstein's Argument for Non-Euclidity on a Rotating Disk 

The argument  o f  Einstein (1921)  is as follows: 

Let K '  be a system of coordinates whose z'-axis coincides with the z-axis of [an inertial 
system] K, and which rotates about the latter axis with constant angular velocity..- - 
Imagine a circle drawn about the origin in the x'y'-plane of K',  and a diameter of this 
circle. Imagine further that we have given a large number of rigid rods, all equal to 
each other. We suppose these laid in series along the periphery and the diameter of the 
circle, at rest relatively to K'. If U is the number of these rods along the periphery, D 
the number along the diameter, then, if K'  does not rotate relatively to K, we shall have 
U/D = 7r. But i fK '  rotates we get a different result. Suppose that at a definite time t of 
K we determine the ends of all the rods. With respect to K all the rods upon the periphery 
experience the Lorentz contraction, but the rods upon the diameter do not experience this 
contraction (along their lengths!). 1 It therefore follows that U/D > ~r. It therefore follows 
that the laws of configuration of rigid bodies with respect to K'  do not agree with the laws 
of configuration of rigid bodies that are in accordance with Euclidean geometry. 

Accord ing  to the view of  Strauss this argument  is wrong, and he writes 

If the measuring rods laid along the circumference of the rotating disk are Lorentz 
contracted with respect to the inertial frame, so are the distances on the circumference they 
are supposed to measure; hence the two effects would cancel each other, and the ratio U/D 
would turn out to equal ~r as in the Euclidean plane. 

The quest ion o f  whether  both the measuring rods laid along the circum- 
ference o f  the rota t ing disk and the e lements  o f  the c i rcumference do have a 
Lorentz  cont rac t ion ,  will now be invest igated,  using special relativity. 

As po in ted  ou t  by M¢ller (1952),  i f  measuring rods are kept  in a f ixed 
posi t ion relative to an accelerated system o f  reference,  they will generally be 
submit ted  to forces that  may  cause a de format ion  o f  the measuring rods. This 

1 These considerations assume that the behavior of rods and clocks depends only upon 
velocities, and not upon accelerations, or, at least, that the influence of acceleration 
does not counteract that of velocity. 
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deformation will, however, depend on the elastic properties of  the material 
from which the measuring rods are made, and all such deformations of  the 
measuring rods can therefore be corrected for. In general it is assumed that the 
(corrected) standard measuring rods in an accelerated system are subjected to 
Lorentz contractions only, which means that the lengths of  the rods are in- 
dependent of the accelerations. Thus all standard measuring rods are assumed 
to perform Born rigid motions, so that their proper lenghts are unchanged 
(Newburgh, 1974). 

In order to obtain this, n rods are assumed to rest on the disk without fric- 
tion, being kept in place by a frictionless rim on the circumference of  the disk, 
each rod being fastened to the disk at one end only, at points Pc, so that they 
just cover the circumference when the disk is not  rotating, as shown in 
Figure 1. 

/ 

Figure 1. The disk and the measuring rods at rest. 
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Now we regard the process of  accelerating the disk with the rods, so that it 
gets an angular velocity. At the moment considered the disk has an angular 
velocity co, which is t o b e  increased. The (corrected) acceleration of  the rods 
and the disk must be prescribed so that (a) the proper lengthL0 of the rods 
remains unchanged, and (b) no kinematic inconsistencies result. 

Condition (a) demands that in the instantaneous rest frame K k of  each rod, 
every point of  the rod with which this intertial frame is associated is accelerated 
simultaneously, when elastic deformations and delays are corrected for. 
According to the Lorentz transformations from Kk to K one observes in K 
that the front of  each rod is accelerated at a time (cor/c2)Lo later than the rear 
end of  it. Thus each rod gets an increased Lorentz contraction due to the 
acceleration. When the disk has an angular velocity co, every rod is observed 
in K with a length L = Lo(1 - c02r2/c2) 1/2. 

According to the view of  Strauss the circumference of  the disk is Lorentz 
contracted in the same way. This will here be investigated from a kinematic 
point of  view. 

Now we associate an instantaneous inertial rest frame Ek with each element 
between two neighboring points Pg and Pk+l on the circumference. If  the 
accelerations of  each set of  neighboring points are simultaneous, as measured in 
the associated rest frame, so that the proper lengths of  the elements remain un- 
changed, the circumference is Lorentz contracted as observed in K. However, 
it may be shown (Gr~bn, 1975) that it is kinematically self-contradicting to 
assume that all n points on the circumference get accelerations simultaneously 
as measured in the successive inertial systems Ek. Thus a transition of  the disk 
from rest to rotational motion, while it satisfies Born's definition of  rigidity, 
is a kinematical impossibility, tn this way the relativistic kinematics leads to 
the conclusion that the circumference of  a rotating disk is not Lorentz 
contracted. 

The only isotropic way of  giving the disk an angular velocity is to accelerate 
all points Pk simultaneously as measured in K. In E k one then measures that 
the point Pg is accelerated at a point of  time 

Atk = (1 - a)2r2/cZ)-l/z(cor/c2)Lo (2.1) 

earlier than the point P h + I  • Thus the distance between these points, that is 
the point at the front of  one measuring rod and at the front of  the next, 
increases, as observed in Ek. However, as the (corrected) measuring rods are 
moving rigidly, their proper lengths remain unchanged. Accordingly the rods 
separate from each other as the disk accelerates, i f  the velocity of  a rod is 
increased from rco to r(co + dco) as observed in K, its velocity change, as 
observed from Ek, is (1 -- co2r2/c2)-lr dw. During this change the distance 
between two neighboring rods increases with 

dslc = (1 - co2r2/c2)-3/2(cor2/¢2)Lodco (2.2) 
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Integrating, one finds the distance between the rods, as measured in E k, when 
the disk rotates with an angular velocity w: 

s k = [(1 - 602r2/c2) -1/2 - l l L  o (2.3) 

Thus the distance as measured in K is 

s = Lo - Lo(1 - 6o2r2/c2) 1/2 (2.4) 

in accordance with the fact that the measuring rods are Lorentz contracted, 
while the circumference of the disk is not. The observation in K of the rotat- 
ing disk and the measuring rods is shown in Figure 2. 

0~ 
o 

Figure 2. The rotating disk and the measuring rods. 
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The results of the above analysis imply that the proportion between the length 
of the circumference of a rotating disk and the length of its diameter, measured 
with (corrected) standard measuring rods, rotating with the disk, is 

f =  (1 -- co2r2/c2)1/2 (2.5) 

Since this statement is invariant under a transformation connecting two 
different coordinate systems inside the same system of reference, as it is based 
on the use of standard instruments, it may be regarded as a statement character- 
izing the intrinsic spatial geometry on the rotating disk. It follows from equation 
(2.5) that this geometry is non-Euclidean. 

3. Coordinate Transfotvnations to a Rotat ing  Frame 

In selecting a coordinate system for a rotating frame, one should aim at 
obtaining an unambiguous kinematics giving as simple a description of physical 
phenomena as possible. Also the coordinates should have the proper metrical 
significance. Among relevant phenomena is the result of a recent experiment 
performed by Phipps (1974), the Sagnac effect (Post, 1967), the Lorentz con- 
traction of (corrected) standard measuring rods, and the time dilation of moving 
standard clocks. 

In analogy with the Lorentz transformation, Franklin (1922), Trocheries 
(1949), and Takeno (1952) have proposed the following transformation to a 
rotating frame: 

r 'O' = 7( tO - v t ) ,  

( V2t-1/2 
7 = 1 - ~ ]  

with 

z ,=(  = r, = z, 7 t -  

(3.1) 

v : c tanh (cot~c) (3.2) 

As pointed out by Phipps, the velocity distribution given in equation (3.2) 
is contrary to the results of his experiment. 

Strauss has used the transformation (3.1), but with the linear velocity 
distribution 

v = cor (3.3) 

As to the time parameter, he writes. 

A correct treatment of rotating frames must use local times depending on the radius, 
because standard clocks revolving in different circles and hence with different speeds 
cannot be synchronized to show the same time all the time. 

From the transformation (3.1) it is apparent that Strauss has used a time 
parameter measured on standard clocks synchronized according to the 
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Einstein convention. The transformation is stated to be valid in a cylindrical 
local subframe with a certain radius r. 

However, it may be shown that it is impossible to obtain a consistent syn- 
chronization of  clocks along a circle around the origin in a rotating frame 
(Gr6n, 1975). Thus the time parameter used in the transformation (3.1)is not 
welt defined. This ambiguity in the chosen time parameter may be removed 
(Arzeli6s, 1956). The practical use of  this coordinate system may, however, 
easily lead to wrong conclusions. 

Calculating the velocity of  light on a rotating disk in these coordinates, 
one finds that it is constant and equal to c. This is a direct consequence of  the 
assumed procedure for synchronization of  the clocks used. From this result it 
foltows that the time taken by light signals in making complete turns in 
opposite directions or~ the rotating disk are equal and independent of  the 
angular velocity of  the disk. This, however, is in contradiction with the result 
of  Sagnac's experiment. 

Using the Galilean-like transformation 

O' = 0 - cot, r' = r, z '  = z, t ' = t (3.4) 

one deduces for the velocity of  light along the circumference of  the disk (Grin, 
1975) 

C t = (1  - C O 2 r 2 / ¢ 2 ) - 1 / 2 ( C  - -  COl') (3.5) 

The difference in time for the two signals is then, to the first order in cor/c, 

A t  = 4corirZ / e  2 (3.6) 

in accordance with the result of  Sagnac's experiment. 
It should be noted that there is no necessity of  using standard clocks in a 

physical description inside a rotating reference frame. The transformation (3.4) 
implies the use of  coordinate clocks that are synchronized and that have their 
rates adjusted to read the same time as that of  the clocks in K. This may be 
practically performed using time signals from the center of  K '  (Grin,  t975). 

Strauss states that the spatial coordinates introduced by equation (3.4) have 
no metrical significance. In consequence of  the results in Section 2 this does 
not seem to be correct. The spatial coordinates with global metrical significance 
for the rotating disk are a system of measuring rods rigidly fastened to the disk. 
As different from the standard rods, the coordinate rods are not assumed to 
perform Born rigid motions. Instead they are assumed to be parts of  the 
physical frame of  reference (Brillouin, 1970) for which they have metrical 
significance. For example, coordinate scales, or a coordinate network, is 
engraved in the material of the disk. The coordinate transformation O' = 0 - c o t  
is now seen to be a consequence of  the result in Section 2, that there is no 
Lorentz contraction of  the circumference of  the disk. 
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4. The Spatial Geometry on a Rotat ing Disk 

Assume that the disk is covered with a network of polar coordinates. The 
distances between the radii and the circles are so chosen that an arbitrarily 
given square at the circumference of the disk may be regarded as quadratic 
when the disk is not rotating. 2 This square defines the unit coordinate length in 
the radial and the tangential directions. Now this definition is still valid when 
the disk rotates. The sides of the square define the metrical significant length 
units on the disk. Thus, relative to the spatial geometry on the disk, the square 
is still quadratic when the disk rotates. 

Euclidean geometry implies that the sides of a square, which is said to be 
quadratic, have equal lengths as measured with (corrected) standard measuring 
rods, instantaneously at rest relative to the measuring object. Use of such 
measuring rods gives the result that the lengths of the sides of the "quadratic" 
square on the rotating disk are unequal. From this one concludes that the 
geometry of the rotating disk is non-Euclidean. 

In view of the arbitrary smallness of  the square it is tempting to conclude, 
as Strauss does, that the geometry of the rotating disk is non-Euclidean, even 
locally. This conclusion will now be discussed. 

Take the Earth as an illustrating example. The surface of the Earth is non- 
Euclidean globally (spherical) and Euclidean locally (plane). The non-Euclidean 
character of the surface of the Earth is manifested by the  impossibility of 
covering it with a network of quadratic squares. Regardless of how small the 
squares are made, those near the poles are far from quadratic. Nevertheless 
the surface of the Earth is locally Euclidean at the poles. This is evident from 
the possibility of introducing Euclidean coordinates locally, everywhere on the 
surface of the earth. 

In the same way, the geometry on the rotating disk is globally non-Euclidean. 
This is manifested by the impossibility of introducing Euclidean (or Minkowsk- 
ian)' coordinates globally on a rotating disk. Near the circumference of the disk, 
where cor -+ c when the angular velocity of the disk is made sufficiently great, 
the squares of the polar-coordinate network chosen above are far from quadratic, 
measured with standard measuring rods, independently of how small the squares 
are made. However, it is everywhere possible to introduce inertial frames with 
Minkowskian coordinates and Euclidean spatial coordinates. By this criterion 
the spatial geometry of the rotating disk is locally Euclidean. 

The spatial geometry in any frame of reference may be mathematically 
described by introducing the metrically significant coordinates and calculating 
the form of the proper spatial line element in these coordinates. This is the 
method used by M~bller (1952, p. 238) in obtaining the intrinsic spatial geometry 
in any frame. 

One can define the proper spatial line element by the following operations. 
Use the radar method and measure the time dr taken by a light signal between 

2 Alternatively one could use Cartesian coordinates, covering the disk with a network 
(but not a whole number) of exactly quadratic squares. 
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emission and absorption on a standard clock. The proper spatial line element 
in the direction a between the clock and the reflector is then given'by 

do a = ½c dr (4.1) 

Using this method it can be shown that the proper spatial line element is 
generally given by (Landau and Lifshitz, 1971) 

dcj2  = (gab -- g a 4 g b 4 / g 4 4 )  dXa dxb,  a, b = 1 ,2 ,  3 (4.2) 

where g,zv are the elements of the metric tensor. MNler (1952, Appendix 4) has 
given the mathematical proof that this element is invariant under a transformation 
connecting two different coordinate systems inside the same system of reference, 
and that 

~[ab = gab  -- g a 4 b b 4 / g 4 4  (4.3) 

transforms as a tensor. The spatial tensor Tab characterizes the spatial geom- 
etry relative to the chosen coordinates. When these are those of the metrically 
significant coordinate system in a given reference frame, the spatial tensor 3'a~ 
characterizes the spatial geometry inside that reference frame. 

The method is valid in obtaining both the global and the local geometry in a 
given reference frame. However, it is essential to distinguish between these 
cases when coordinates are introduced, and when the mathematical result, given 
in equation (4.2), is to be interpreted. 

Generally the coordinates with local metrical significance are the Minkowskian 
ones, defined by use of inertial standard measuring rods and clocks, instan- 
taneously at rest relative to the measuring object. Infinitesimal Minkowskian 
coordinates are generally integrable only in inertial frames. Thus in non inertial 
frames, of which the rotating disk is an example, the Minkowski coordinates 
have no metrical significance for the global geometry, and the coordinate 
system with global metrical significance has no local metrical significance. 

The four-dimensional line element 

d s  2 = g ~ d x u  dx ~, /~, u = 1, 2, 3, 4 (4.4) 

may be written (M~511er, 1952, p. 245) 

_[ ga4 &° ]2 
dg2=do 2 1(_g~4)1/27~ 7 (-g44) I/2 c2d? (4.5) 

The velocity of a particle is defined by 

do 
u = - -  (4.6) 

dt  

The velocity of light, w, is given by equations (4.5) and (4.6) with ds = 0. This 
gives 

[ gag ldx° 
W = [(_g44)1/2  ] clt c ( - - g 4 4 ) 1 / 2  (4.7) 
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The velocity of a particle moving in the direction a follows using equations 
(4.2) and (4.6): 

do / 2 \1/2 
Ua = - ~ a  = l g a a  x ga4~ d x a  (4.8) 

d t  \ g44 ] d t  

Equations (4.7) and (4.8) lead to the following expression for the velocity of 
light in the direction a: 

(- -g44)  1/2 

Wa = 1 + ga4/(g2a4 - -  gaag44) 1/2 c (4.9) 

Substituting equation (4.7) in equation (4.5) the four-dimensional line element 
can be written 

ds  2 = d e  2 ..... w 2 d t  2 (4.10) 

If  the coordinates are chosen so that the spatial interval and the velocity of 
light are directed along one of the coordinate axes, the element may be written 

d s  2 = daa  z - Wa 2 d t  2 (4.11) 

where w a is given by equation (4.9). 
Strauss criticizes the use of Galilean-like coordinates together with equation 

(4.2) to obtain the intrinsic spatial geometry in K ' .  He writes 

The mistake, repeated over and over again, lies in the method used, viz., the use of a 
Galilean transformation for the introduction of  coordinates in the rotating frame. --- In 
fact, the method described gives not only wrong results, but leads to inconsistencies: 
when applied to the transformation between inertial frames it yields non-Euclidean geom- 
etries for all inertial frames except the original one. 

The proof of this given by Strauss is straightforward and correct. However 
it does not concern the relativistic kinematics in rotating frames. If one calcu- 
lates the velocity of light along the x axis and y axis, employing equation (4.9) 
with Galilean coordinates, in an inertial system moving along the positive 
x direction with velocity v, relative to the inertial system in which the velocity 
of light is isotropic and equal to c, the result is 

W x = (1 -- V2/C2)-1/2(C -- 0), W y  = (1 - 1j2/c2)1/2c (4.12) 

Thus the velocity of tight is anisotropic in this description, which is contrary 
to the results of the Michelson-Morley experiment. 

The essential difference between inertial franaes and rotating frames is the 
impossibility of measuring the absolute translational velocity of an inerital 
system, and the possibility of measuring the angular velocity of the rotating 
frame. It is a consequence of this difference that the kinematics inside these 
two types of frames are different. Inside K the velocity of light is isotropic, 
leading to the use of the Lorentz transformations between inertial frames. 
In K' ,  however, the result of Sagnac's experiment implies an anisotropic light 
velocity, which leads one to adopt a Galilean-like transformation from K to K' .  
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This, however, does not mean the introduction of a prerelativistic, Galilean 
kinematics in K' .  Using the transformation (3.4) and equation (4.2) the proper 
spatial line element in K'  is found to be 

d o  2 = dr 2 + d z  2 + (1 - c o 2 r 2 / c 2 ) - t r  2 dO '2 (4 . I  3)  

characterizing a non-Euclidean geometry. The relativistic character of this 
result is evident from the fact that it can be derived from the relativistic 
properties of (corrected) standard measuring rods rotating with the disk, and 
the kinematic properties of the disk, as discussed in Section 2. 

The method leading to equation (4.2) for calculating the intrinsic geometry 
in any frame is essentially a relativistic one, since it is based on the frame 
invariance of the four-dimensional line element ds 2. Now Strauss states that 
"the relativistic invariance of MS 2 is a weaker postulate than the separate 
invariances of do 2 and dt 2 postulated by Galilean kinematics." If  this statement 
is intended to mean that the invariance of  do 2 and o fd t  2 implies the invariance 
ofds  2, it is not correct. If  correct it would mean that the Galilean kinematics 
implies the invariance of ds 2. This, however, is not the case. The reason is seen 
in equation (4.11). Even if do 2 and dt  2 are frame invariant in the Galilean 
kinematics, the velocity of light is not, and this destroys the invariance of ds 2. 
Thus the invariance of ds 2 distinguishes the relativistic kinematics from the 
Galilean one. 

5. Conclusion 

The measuring rods moving rigidly on the circumference of a rotating disk 
are Lorentz contracted. However, it is shown that a transition of the disk from 
rest to rotational motion, while the circumference satisfies Born's definition 
of rigidity, is a kinematical impossibility. The elements of the circumference 
are not Lorentz contracted. 

The physical phenomena connected with rotating frames are different from 
those in inertial frames. In K '  the Sagnac effect leads to an anisotropic velocity 
of light and to the possibility of measuring the absolute angular velocity of 
the frame. Furthermore, by use of the relativistic kinematics one concludes that 
synchronization of clocks around a circle about the axis in K ' ,  according to the 
Einstein convention, is impossible. 

Taking advantage of these facts, wishing a simple and consistent kinematics 
in K ' ,  and demanding a coordinate system with global metrical significance in 
K ' ,  one is ted to the Galilean-like transformation from K to K '  given by equation 
(3.4). When these coordinates are employed in the method used by M~btler in ob- 
taining the global intrinsic spatial geometry of the rotating disk, their metrical 
significance secures that the method is adequate. In this way one is led to the 
result that the global spatial geometry is non-Euclidean inside a rotating 
reference frame, in accordance with the result of informal arguments based 
explicitly on the relativistic kinematics. Recognizing the possibility of introduc- 
ing Minkowskian coordinates locally in the rotating frame, one is led, by the 
same method, to the result that the local spatial geometry is Euclidean inside 
a rotating reference frame. 
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